This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Determination of the Anomeric Configuration of C-Nucleosides by ¹H and ¹³C NMR Spectroscopy

C. K. Chu^a; F. M. El-kabbani^a; B. B. Thompson^a

 $^{\rm a}$ Department of Medicinal Chemistry and Pharmacognosy College of Pharmacy, The University of Georgia Athens, GA

To cite this Article Chu, C. K., El-kabbani, F. M. and Thompson, B. B.(1984) 'Determination of the Anomeric Configuration of C-Nucleosides by 1 H and 13 C NMR Spectroscopy', Nucleosides, Nucleotides and Nucleic Acids, 3: 1, 1 - 31

To link to this Article: DOI: 10.1080/07328318408079416 URL: http://dx.doi.org/10.1080/07328318408079416

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

DETERMINATION OF THE ANOMERIC CONFIGURATION OF C-NUCLEOSIDES BY ¹H and ¹³C NMR SPECTROSCOPY

C. K. Chu*, F. M. El-Kabbani, and B. B. Thompson

Department of Medicinal Chemistry and Pharmacognosy College of Pharmacy, The University of Georgia Athens, GA 30602

CONTENTS

- 1. Introduction
- 2',3'-0-Isopropylidene Group Protected
 D-Ribofuranosyl-C-Nucleosides
- Acyl or Benzyl Group Protected <u>D</u>-Ribofuranosyl-C-Nucleosides
- 4. Free D-Ribofuranosyl-C-Nucleosides
- 5. Free 2'-Deoxy-D-ribofuranosyl-C-Nucleosides
- 6. Free D-Arabinofuranosyl-C-Nucleosides

1. Introduction

Since the discovery by Cohn¹ in 1959 of the first C-nucleoside pseudouridine, an isolate from t-RNA hydrolysates, a number of biologically interesting C-nucleosides [formycin, formycin B, oxoformycin, oxazinomycin (minimycin), showdomycin, pyrazofurin, and several derivatives of pseudouridine] have been isolated from the culture filtrates of various micro-organisms, and their structures have been elucidated. Several review articles dealing with the chemistry and/or biology of C-nucleosides have appeared.²⁻⁵

Due to significant antitumor and antiviral activities exhibited by these C-nucleosides, a great deal of synthetic effort has been devoted

to the synthesis of naturally occurring C-nucleosides.²⁻⁴ Various analogs have also been synthesized in efforts to find new and more potent chemotherapeutic agents.

The unique structural feature that distinguishes the C-nucleosides from the N-nucleosides is the presence of a carbon-carbon linkage in place of the usual carbon-nitrogen linkage between the aglycon and sugar moieties. Synthesis of C-nucleosides is deceptively difficult because of this feature, and in part, because of their facile anomerization during the synthesis as well as the absence of a good general synthetic route. Nevertheless, a number of useful intermediates have been developed for the synthesis of various types of C-nucleosides. 6-13,81-84

A number of synthetic C-nucleosides have been prepared during the past ten years. Despite the fact that their NMR characteristics are somewhat different from those of N-nucleosides, review articles dealing with the assignment of anomeric configuration have not appeared in the literature. This report summarizes the various methods used for the assignment of the anomeric configuration of C-nucleosides based on published data as well as on our experience in C-nucleoside chemistry.

2',3'-0-Isopropylidene Group Protected D-Ribofuranosyl C-Nucleosides

For pyrimidine C-nucleosides protected with the 2',3'-0-iso-propylidene group, there are two basic criteria which have been successfully utilized for assignment of anomeric configuration: chemical shift (H-1') and the Imbach rule.

The chemical shifts for the anomeric protons (H-1'), being used extensively in N-nucleoside anomeric assignments, 14 have also proven to be useful in C-nucleoside assignments. The use of chemical shift data relies upon the observation that the α -anomeric proton consistently appears at lower field (higher 5) than the corresponding β -anomeric proton. This effect can be attributed to the shielding effect of a cis-hydroxy group as observed for N-nucleosides. 14 Examples of assignments made for anomeric pairs using this method include compounds $\underline{1}$, $\underline{2}$, $\underline{3}$, $\underline{10}$, $\underline{11}$, and $\underline{12}$ in which the α -anomers consistently resonated at lower field than the β -anomers. This method also applies to the five-membered ring C-nucleosides ($\underline{15}$ - $\underline{36}$) and to "purine-like" C-nucleosides ($\underline{37}$ - $\underline{49}$) which contain the 2',3'-0-isopropylidene group.

No exceptions to this rule have been found among the known C-nucleosides protected with a 2',3'-0-isopropylidene group.

In N-nucleosides, the coupling constant for the H-1' and H-2' protons $(J_{1',2'})$ has been used along with the chemical shift data for assignment of anomeric configuration when the J value is small enough (1.0-3.5~Hz) for the β -anomer. ¹⁴ Karplus' equation or its modification predicts that the observed coupling constant will have a value of about 3.5-8.0 and 0.0-8.0 Hz for the α - and β -anomer, respectively. The $J_{1',2'}$ values have been shown to be solvent dependent. ¹⁴

H-1', H-2' coupling constants ($J_{1',2'}$) for protected C-nucleosides have not been found useful for anomeric configurational assignments because in some cases the anomeric proton peaks tend to overlap with those H-2' and H-3' protons and because $J_{1',2'}$ values of the β -D configuration are not consistently smaller than those of the α -D configuration. As an example, compound 12 shows a $J_{1',2'}$ = 4.6 Hz and 3.6 Hz for the α - and β -anomers, respectively, whereas compound 16 shows a value of 3.1 and 4.6 Hz for the anomers. In free C-nucleosides, however, $J_{1',2'}$ coupling constants provide valuable information for assignment of configuration (Table 3).

Another convenient method for assigning anomeric configuration involves use of the Imbach rule. This method has been successfully applied to N-nucleosides $^{15-17}$ although exceptions to this rule have recently been reported. 80 The Imbach rule is based on the difference in chemical shift values $(\Delta\delta)$ between the endo- and exo-methyl group of the isopropylidene moiety as a 2',3'-hydroxyl protecting group of ribose. The difference observed is usually <0.15 and >0.15 ppm for the $\alpha-\underline{D}$ and $\beta-\underline{D}$ anomers, respectively. Even before the Imbach rule was formulated, this difference had been observed. 14 Imbach and co-workers suggested that this difference could be attributed to the anisotropic effect of the heterocyclic ring on endo methyl groups in an α -anomer. This argument has been substantiated by data on those 2',3'-O-isopropylidene- \underline{D} -ribofuranosyl derivatives which do not have heterocyclic aglycons and thus do not comply with these criteria. 34

The Imbach rule appears to be a reliable method for determining the anomeric configuration of 2',3'-0-isopropylidene group protected pyrimidine-C-nucleosides despite the trityl group substitution at the 5'-position of the ribose. According to Imbach, 34 5'-position substitution causes ring deformation and he recommended that the rule

not be applied under those circumstances. Compound 1, 2, 10, 11, and 12 consistently follow the rule that α - and β -anomers exhibit $\Delta\delta$ 0.02-0.14 and 0.16-0.23 ppm, respectively. The rule is even useful when only one anomer is available during a synthesis. For example, 5-(2, 3-0isopropylidene-5 -0-trityl- α -D-ribofuranosyl)isocytidine (7), which was obtained as the only C-nucleoside product from the condensation of ethyl 3-methoxy-2-(2,3-0-isopropylidene-5-0-trityl-D-ribofuranosyl)acrylate and guanidine, gave a $\Delta\delta$ value of 0.11 ppm. According to Imbach's rule, this compound falls into the range assigned for α-anomer. This assignment proved to be accurate. 8 Compound 9, also obtained as an only product, gave a $\Delta\delta$ value of 0.23 ppm. The assignment of a configuration based on the Imbach rule was later shown to be accurate on the basis of $J_{3',4'} = 3 \text{ Hz}$ and other features of the spectrum. 18 The Imbach rule has therefore proven to be a very useful tool for assignment of anomeric configuration of protected pyrimidine-C-nucleosides (Table 1) with one exception (see compound 3). In this case assignment of configuration relied on the chemical shift (H-1') data and on the deblocked nucleoside.

The Imbach rule has also been found convenient for anomeric assignment of five-membered ring C-nucleosides (15-36). Although the strict sense of Imbach's rule ($\Delta\delta$ <0.15 for α and $\Delta\delta$ >0.15 for β) is not applicable, the general trend of $\Delta\delta$ values between $\alpha-$ and $\beta-$ anomers still held. For example, 3-aminopyrazole-C-nucleoside 15 gave $\Delta\delta$ 0.19 and 0.22 for the α - and β -anomers, respectively. The $\Delta\delta$ 0.19 is considerably higher than that of Imbach's rule but is, nevertheless smaller than that for the β -anomer. It is to be emphasized, however, that caution should be exercised whenever only a single anomer is available for analysis unless the observed value is very low for the α -anomer or very high for the β -anomer. Values for the α -(17-19) and the β -(32) isomers were observed as high as $\Delta\delta$ 0.21 and as low as $\Delta\delta$ 0.19, respectively. Nevertheless, for compounds 26-29, the values were high enough to permit assignment as the β -anomers and were thus consistent with concept of Imbach. The original assignments of these compounds, however, were based on the known anomeric configuration of the starting material. 35 It is interesting to note that the nucleosides 26-29display extremely high δ values (5.43-5.84 ppm) for H-1' when compared to other β -anomers (4.5-5.0 ppm). This may be attributed to the deshielding effect of the carbonyl group adjacent to the anomeric

proton. In the case of compound $\underline{35}$, the Imbach rule or a modification thereof alone will not permit an unambigous assignment of the configuration because the same $\Delta\delta$ value (0.24 ppm) is exhibited by both α - and β -anomers. Thus, Cousineau and Secrist 27 assigned the anomeric configuration of $\underline{35}$ on the basis of 13 C NMR shift data, comparison of H-1' chemical shift, and shape of the H-4' signal.

It has been observed 18 that the isopropylidene methyl group signals occur at 25.5 \pm 0.2 and 27.5 \pm 0.2 ppm for the β -anomer and at 24.9 \pm 0.3 and 26.3 \pm 0.2 for the α -anomer. Compound 35 thus was found to resonate at 25.68 and 27.62 ppm for the β-anomer and 25.10 and 26.41 ppm for the \alpha-anomer. These data are consistant with the above observation. 18 In addition, it was observed that for similar compounds in the study. 13 C $\Delta\delta$ for these two methyl groups was 1.90 ± 0.2 and 1.25 ± 0.2 ppm for the α - and β -anomers, respectively. This is consistent with 35 (δ 1.94 ppm for the β - and 1.31 ppm for the α -anomer). Further support for the configurational assignment came from an examination of the chemical shift of the central (or quaternary) isopropylidene carbon. From the study of over 60 examples, they 27 were able to ascertain that these resonances usually appear at 114.5 ± 0.6 ppm for the β -anomer and at 112.7 \pm 0.6 ppm for the α -anomer. The values obtained for 35 (114.77 and 112.97 ppm) were, therefore, consistent with the $(\delta 5.56)$. Additionally, the above mentioned effect (values) may also be attributed to the electron withdrawing effect of acyl groups at H-2'.

The preceding discussion has focused on the utility of ^1H NMR spectroscopy in determining the anomeric configuration of C-nucleosides. ^{13}C NMR spectroscopy has also been applied, as briefly mentioned (page 5), to the problem of establishing the configurations of the sugar intermediates, 18 pyrazole C-nucleosides, 21 thiazole-C-nucleosides, 27 showdomycin analogs, 22 and imidazole-C-nucleosides. 23 It has been established that the chemical shifts of carbon atoms are extremely sensitive to steric crowding, especially by vicinal oxygen substituents. Thus, sterically crowded carbons resonate at higher field (lower ppm) than in the absence of steric crowding. This shielding effect has been observed in furanose sugars 24 and the chemical shift of the anomeric carbon atoms has also been used to distinguish between 2 and 2 The signal of that isomer having a cis relationship between the aglycon and its C-2 hydroxyl group will appear at higher field.

HO CN
HN N
$$\frac{C - \alpha}{D - \beta}$$

For example, the signal due to C-1' in the 13 C NMR spectrum of the α -anomer of compound C appeared at lower field (83.91 ppm) than did the β -anomer D (81.24) 23 . The anomeric configurational assignment was confirmed using the Imbach rule. Moffatt and co-workers 22 also assigned the configuration of compound 33 on the basis of 13 C chemical shifts for the isopropylidene methyl groups. They observed that the 13 C chemical shifts for the methyl groups in the 2',3'-O-isopropylidene derivatives above data for β - and α -anomers, respectively. Furthermore, the chemical shifts of anomeric protons (δ 4.94 for a β -anomer and 5.30 for an α -anomer) assured an unambiguous assignment for the anomeric configuration of compound 35.

It has been observed that for "purine-like" C-nucleosides with 2',3'-0-isopropylidene as well as 5'-0-trityl groups substituted D-ribose, the difference in chemical shift values ($\Delta\delta$) between the endoand exo-methyl groups of the isopropylidene moiety do not provide any helpful information for assignment of the anomeric configuration despite the usefulness of the rule in pyrimidine C-nucleosides with the same protecting groups of the ribose moiety. This may be attributed to anisotropic effects of the trityl group as originally indicated by Imbach. When The Example, compound 38 ($\Delta\delta$ 0.23 ppm for both anomers) and 39 ($\Delta\delta$ 0.24 ppm for both anomers) exhibit no difference. Chemical shift data for the H-l' proton in these nucleosides do, however, provide a reliable tool for determining the configurational assignments.

In addition to the chemical shift method, the $J_{3',4'}$ coupling constants (or $J_{5,6}$ for the structures shown in <u>A</u> and <u>B</u>, below) have been used for the assignment of anomeric configurations of pyrimidines, ¹⁹ "purine-like" ²⁰ C-nucleosides, and sugar intermediates. ¹⁸

From their study of furanosyl C-glycosides, Moffatt and coworkers 18 observed that the β -anomer \underline{B} gave a value of $J_{5.6} = 4-5$ Hz while the α -anomer \underline{A} exhibited a $J_{5.6} = 0-1$ Hz. X-Ray crystal studies of an α -anomer revealed that the furanose ring adopts a configuration in which C_3 , C_4 , C_5 and C_6 are essentially planar and the ring oxygen is puckered, projecting into an endo oriented envelope. Examination of Dreiding models showed that such a conformation results in a dihedral angle between H-5 and H-6 of about 90°, which is consistent with the very small observed coupling constant. Therefore, Moffatt and co-workers suggested that the \(\beta - C - glycosides \) adopt an alternate O-exo envelope conformation in which the steric interaction between these substituent groups is relieved and the dihedral angle is about 160°. This value is compatible with the observed value of $J_{5.6}$ of 4-5 Hz. This criterion, along with the chemical shifts of H-1', were utilized for the assignment of pyrimidine 12 and purine nucleosides 111 and 112, in which β -anomer showed well-resolved sugar proton spectra while the spectral peaks for H-3' and H-4' protons are collapsed for the α -anomer (i.e., $J_{3',4'}$ = about 0 Hz). The same phenomena have been observed in N-nucleosides resulting in an "apparent triplet" resonance peak for H-4', 85

3. Acyl or Benzyl Group Protected C-Nucleosides

Although it is quite convenient to start from 2,3-0-isopropylidene-5-0-tritylribofuranose, acetyl, benzoyl or benzyl protected D-ribose have also been used for C-nucleoside syntheses. For these compounds (50-63), most of the assignments of anomeric configuration at the protected stage were made on the basis of the starting materials for which the anomeric configuration had previously been established. No general criteria have been established for the direct assignment of

these nucleosides. Furthermore, the assignment based on the chemical shifts of H-1' do not seem plausible for these compounds. For example, anomeric pair 52 behaves differently from other pairs of protected C-nucleosides. This may be rationalized on the basis of the deshielding effect of the carbonyl group by which the H-1' proton in the β -anomer is influenced more than that of the α-anomer. The Dreiding models reveal the the H-1' proton of the 3-anomer lies near the carbonyl group while the same proton in the α -anomer does not. Consequently, H-1' of the β anomer resonates at lower field (65.62) than the corresponding ∞-anomer of a variety of C-glycosides appear at 25.5 ± 0.2 and 27.5 ± 0.2 for the β -anomers and at 24.9 \pm 0.2 and 26.3 \pm 0.2 for the α -anomers. For compound 33, the observed values were 25.49 and 27.83 ppm while those for 2,3'-0-isopropylideneshowdomycin were 25.43 and 27.60 ppm. Both sets of data were in good agreement with the β -configuration. As previously discussed, for compound 35, Moffatt and co-workers 22 used the ¹³C chemical shifts of the central isopropylidene carbon which appears at 114.53 ppm as a critical piece of evidence in their studies. This chemical shift was consistent with other data. Although only one anomer was available for assignment, ¹³C NMR spectroscopic data, the Imbach rule, and the chemical shift data for the H-1' proton combined to allow assignment of the anomeric configuration of 33 with a reasonable degree of confidence. The use of 13 C NMR data failed to make an assignment in some cases involving carbohydrate intermediates. 21

4. Free D-Ribofuranosyl-C-Nucleosides

The most reliable and convenient method for assignment of anomeric configurations for free C-nucleosides is the use of differences in H-1' chemical shifts. As previously discussed, the H-1' proton of β -anomers appear at higher field than those of α -anomers due to the shielding effects of a cis 2'-hydroxy group. This method has been extensively applied to N-nucleosides. 14 To date we have not uncovered any exceptions to this rule in the published literature. Even when only one isomer is available from the synthetic procedure, the anomeric configuration can be assigned on the basis of the chemical shift for the anomeric proton with a reasonable degree of confidence provided that similar compounds are available for comparison. Moffatt and co-workers 22 assigned the β -configuration for compound $\underline{80}$, for which the H-1' proton signal appeared at $\delta 4.60$. This is close to that of

showdomycin (4.53). Pyrimidine C-nucleosides have H-1' chemical shifts of δ 4.68-5.12 and 4.15-4.72 for the α - and β -anomers, respectively. These values might allow us to determine the anomeric configuration even if a single anomer should become available through synthesis provided that the chemical shift of H-1' is sufficiently low for the β and sufficiently high for the α isomer.

 13 C NMR chemical shifts have been applied also for assignment of anomeric configuration of free nucleosides. Cousineau and Secrist 27 assigned the anomeric configuration for compound 95 on the basis of both 13 C and 1 H chemical shifts. They observed that C-1' of the α -anomer appeared at higher field (76.80 ppm) than the corresponding β -anomer (78.02 ppm). This is consistent with previous findings. 18 , 21

Coupling constants of free C-nucleosides can also be useful in the assignment of anomeric configuration (64-118). It has been consistently observed that in D-ribofuranosyl-C-nucleosides, contrary to the N-nucleosides, β -anomers display, in general, larger coupling constants (3.0-7.3 Hz) than do the corresponding α -anomers (1.8-4.0 Hz), except for those C-nucleosides which do not share close structural features in common with the natural nucleosides (compounds 70, 111-113). Thus it is possible to speculate from this data that the ribose conformation of C-nucleosides is somewhat different from that of N-nucleosides although Smith and co-workers 36 suggested, based on their 1 H NMR study of pseudouridine, that the C-nucleoside assumes a ribose conformation almost identical to that of uridine. The above method, based on the coupling constant values together with the chemical shift data can ensure the unambiguous assignment of anomeric configuration of C-nucleosides.

As previously discussed for protected C-nucleosides, the coupling constants for H-3' and H-4' have also been utilized for assignment of anomeric configuration for compounds $\underline{112}$ and $\underline{113}$ as a complementary method. Igolen and co-workers observed $\underline{20}$ that the β -anomers of $\underline{112}$ and $\underline{113}$ showed well-resolved sugar protons whereas in the α -anomers H-3' and H-4' exhibit collapsed peaks.

Another technique utilized for assignment of anomeric configuration is an application of spin-lattice relaxation time (T_1) for the anomeric proton. The T_1 for β -anomers was found to be about 2.5 times longer (3.24-4.18 sec.) than for the α -anomers (1.35-1.60 sec.). From these observations, Tran-Dinh and co-workers 28 suggested that this criterion

alone may permit the unambiguous determination of anomeric configuration even if only one anomer is available.

Legraverend and co-workers 29 also used this method for assigning anomeric configuration for compound $\underline{115}$. Relaxation times for the α -and β -anomers were 0.85 and 2.30 seconds, respectively. However, because of the limited examples in the literature as well as the limited measurement of the relaxation time in most routine NMR studies, the validity of the method must await further tests.

5. Free 2'-Deoxy-D-ribofuranosyl-C-Nucleosides

¹H NMR spectroscopy has been extensively applied for the assignment of anomeric configuration of 2'-deoxy-N-nucleosides. ¹⁴ The method not only depends on the difference in peak patterns observed for the anomeric protons, but also on peak-widths observed. It has been observed that an α-D anomer displays quartet having a peak-width of 10.4 ± 0.4 Hz for H-1' whereas a β-D anomer displays a pseudotriplet having a peak width of 13.7 ± 0.5 Hz. The occurrence of a quartet rather than a pseudotriplet for the anomeric proton of certain β-anomers has been reported while peak widths have been found to be invalid for 8-substituted purine derivatives in which the free rotation is restricted because of substitution at C-8. Despite these exceptions, the empirical method may be applicable if both anomers are available for comparison in the N-nucleoside series. ¹⁴

In C-nucleosides, a quartet for the α-anomer and a pseudotriplet for the β-anomer are not routinely found. This is probably due to the conformational change of the sugar moiety in C-nucleosides as contrasted to the N-nucleosides. It is well recognized that the bond distances between the aglycon and carbohydrate moieties in C-nucleosides are longer than those of N-nucleosides. Consequently, free rotation along the C-C axis is accelerated, relative to N-C rotation in the N-nucleosides, and may account for the conformational changes of the carbohydrate moiety in the C-nucleosides.

The 1 H NMR spectral patterns exhibited by anomeric protons of 2'-deoxy-D-ribofuranosyl-C-nucleosides 120, 122, 128 and 129 are all quartets whereas compounds 119, 121, and 127 (all β -anomers) exhibit pseudotriplets. The triplet pattern is consistent with 2'-deoxy- β -D-ribofuranosyl-N-nucleosides. For compounds 123, 130, 131, and 132, however, both α - and β -anomers exhibit quartets (double doublets). It

is consequently difficult to assign the anomeric configuration of 2'-deoxy-D-ribofuranosyl-C-nucleosides on the basis of splitting patterns (the quartet-triplet principle 63). In an effort to devise a reliable method, Igolen and co-workers 31 found that the sum, $J_{1',2'}$ + $J_{1',2''}$, was useful. They observed that for compound $\underline{124}$, the H-1' signal was broader for the β -anomer (summed J values = 15.3 Hz) than for the corresponding α -anomer (summed J values = 14.0 Hz). The same trend was also noted for compounds 130, 131, and 132.

Another method of assignment of anomeric configuration was proposed by Srivastava and Robins. ¹³ They observed that the absorption of H-2', H-2" for α -anomers extends to both higher and lower fields, providing a large absorption band width (1.12-1.00 ppm) as compared to the corresponding β -anomer (0.02-0.63 ppm). They suggested that a relatively large band width of $\Delta\delta$ 2', 2", observed for the α -anomer as compared to that of the β -anomer, is due to the spacing of H-2' (trans to the thiazole ring) in an equatorial orientation of the puckered furanose ring and in the deshielding region of the thiazole ring. Consequently, H-2' appears at lower field compared to that of H-2" (trans to H-1'), which is shielded by the cis 3'-hydroxy group and the cis-thiazole ring.

6. Free D-Arabinofuranosyl-C-Nucleosides

For D-arabinofuranosyl-C-nucleosides, as for pentofuranose derivatives, ⁷⁸ the order of H-1' chemical shifts is reversed to that of D-ribofuranosyl nucleosides in which the α -anomer appears at higher field than the corresponding β -anomer. The explanation for this is that the hydroxyl configuration in D-arabinofuranose, which exerts a shielding effect on the cis-hydrogen of the α -anomer, is reversed. Thus, 5-(β -D-arabinofuranosyl)isocytidine ⁷⁴ (133) exhibits an anomeric chemical shift value of 4.67 and 5.02 ppm for α and β , respectively. These data are also consistent with the data for ara-oxoformycin (140) for which α and β signals appear at δ 5.02 and 5.28, respectively. The same trend can be seen for other pairs of arabinofuranosyl-C-nucleosides (see compounds 138-139). Although these examples are the only ones for which H NMR data have been reported, the validity of this method for assigning anomeric configuration seems assured based on experience in the N-nucleoside field. Ferris and co-workers 23 also studied the 13 C chemical shifts for free arabinofuranosyl-C-nucleosides 137 and 138.

	Ref.	∞		8.37		υ <u>:</u>		ि न	51	51	19	16
	Sol	A^{a}		æΩ		മ		ec.	8	œ	⋖	Ø
	H ₁ (8)	4.39		96.4		5,10(s) ^b		5. 0 5(s)	4.93(d)	≤ 4.83	5,40(d)	4.90(m)
	J _{1,2} (Hz)	2.8		3,5		1		1	1	1	4.6	١
IDES	8	0.23		0.11		0.23		0.23	0.10	0.22	0.14	0.20
C-NUCLEOSIDES	Anomer	丝		ę		07		٠.	ŗ	2.	8	હ
TABLE I GROUP PROTECTED C-N		ω±Ž,	R _I	-{ ² / ₂ }α	- 8 6-	~ OBZ	<u>-</u> 0	HA PAGE	o- ¥-	<u>}</u> ~	S N N N	Etooc R _i
-E -	S	ဖျ		~		ω		٥l	9	1	=1	ш
₫ 4	. 1											
T CRO	Ref	σ	6.	6.	6	6	6	∞		Ş	२	
		8	6 8	6	B 9	A 9	6 V	A 8		ς; α		
			-				•				<u>=</u> ,	
		æ	ω	æ	æ	A	4	A		α	<u>=</u> ,	
T/ 2'3'-0-ISOPROPYLIDENE GROU		5.44 B	5,24 B	æ	4.67 B	5.19 A	4,56 A	A		α		
		а 0.04 — 5.44 В	— 5,3 <u>4</u> B	4.79 B	— 4.67 B	3.4 5.19 A	H, 56 A	— 4.99 A		7. 1 8. 8	1 C/14 T	
	Δδ J _{1,2} (Hz) H ₁ (δ) Sol.	H2 a 0.04 — 5.44 B	R ₁ : 0.16 - 5.34 B	4.79 B	— 4.67 B	0.21 3.4 5.19 A	H, 56 A	0.24 — 4.99 A	⊙ =(0.21	1 C/14 T	(

1	∄	5	45	Q	ç	<i>[</i> 7	<i>2</i> ħ		7,1	<i>(</i> h		ç	ŗ	
Ø	A	A	⋖	_	=	٩	⋖		A	٧		<	τ	
5.09(d)	4.76(m)	5.08(d)	≤ 4.76(m)		l	5.18(d)	₹ 4.76		5.19(d)	≤ 4.75			•	
2.7	2.7	1	}	ı	l	3.7	}		4.0	1				
0.21	0.2	0.21	0,22	8	97:1.	0.13	0.24		0.13	0.25		5	77:0	
σ	œ	ď	æ	a	2	ē	αï		8	æ		a	2	
STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS N	A I	N-N-NH2	NA NA SA	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	-5-ǣ	S S S S S S S S S S S S S S S S S S S	Å ₹N ¥N	o=	S NH2	² 4 √ √	.	₹		₹
9	<u> </u>	<u></u>		50			<u>2</u>]		22			g		
19	19	19	}		41		77	24		45	145		43	43
B 19	я 19	8 19			B 41		V 42	A 42		A 42	A 42		A 43	A 43
	ec,		a .		-		۷	4.76 A 42		A			⋖	≤4,80 A 43
Ω	4,69(d) R	æ			æ		۷	4.76 A		5,43 A	Æ		⋖	ζ
4,92(d) B	3.6 4,69(d) R	4.52(d) B			æ		2.2 5.15 A	4.76 A		3,1 5,43 A	5.M A		2.4 5.07(d) A	4,80 A ≤
4,6 4,92(d) B	3.6 4,69(d) R	3.0 4.52(d) B			4.76(%) B		2.2 5.15 A	— 4.76 A		3,1 5,43 A	4.6 5.M A		2.4 5.07(d) A	4,80 A
0.02 4.6 4.92(d) B	0.22 3.6 4.69(d) R	0.22 3.0 4.52(d) B		N	0.15 — 4.76(%) B	}	2.2 5.15 A	0.22 — 4.76 A	•	a 0.09 3.1 5.43 A	0,23 4.6 5.M A	o:-	2 a 0.21 2.4 5.07(d) A	0.22 - ± 4.80 A

Table 1 continued

Table 1 continued

26	25	K	. •	23		8
ह्र	«	æ	i	ω		A
H1(6)	4,83(m)	4,93(d)		4,92(d)		₹ 4,4 7
Jr.2 (Hz)	1					1
80	0.21	0,21		0,19		0.24
Anomer	1 5	e) 0		~ = &	I	er Q
Structure		X 3 3			g J	£ \$ }
ğ	02 B20	<u>m</u>		32	l4 l4	3
Ref	R R	22	82	8	8	8
Sol	0 0	m m	<	A	<	٧
H ((g)	G G	_	_	_	_	
I	5,26(d) 4,99(s)	4,72(d)	5, 8 4(d)	5,43(d)	5,55(d)	5.52(d)
J',2' (42) H	3.0 5.26(4,72(d	2.4 5.84(d	2.8 5.43(d	2,4 5,55(d)	2.8 5.52(d)
24 71,2, (tz)	3.0	1 1	2.4	2.8	2.4	2.8
J',2' (Hz)	0.17 3.0	0.20 — 0.22 —	0.27 2.4	2.8	0.26 2.4	2.8

55	£ 8	57	28 28	27	57 Jed
4 4	~	⋖ 4	< 4	Ø	A ntin
5,55(s)	5.26	5,57(d) 5 ,32 (d)	5.49(d)	5.27(d)	.3 5.33(d) A 57 Table 1 continued
		3.1	3.1 4.3	4.3	4.3 Tab
0.26	0.24	0.2 2 0.23	0.19	0.24	0.24
ර ත	સ	ර ව	ල න	છ	ক
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	R. N.	Z Z	T Z Z	W. N.	£ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
8	4	42	43	4	45
72 72	27	27	42	龙 龙	83 83
e e	< ∢	Ø	∢ ∢	മെ	« «
5,14(d)	5.30(d) 4.94(d)	5. 00 (d)	5.23	5, 0 5(s)	5.50(d)
	2.0	4.0	2.7	1 1	2.7
0.20	0.24 0.24	0.25	0.24	0.23	0.24 0.24
σ	ठ छ	æ	ъ с	ರ ಆ	გ დ
34 HN CC245	35 S S S S S S S S S S S S S S S S S S S	98 F	37 N N N N N N N N N N N N N N N N N N N	86 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2 2 2 2 2 2 2 0 8

Table 1 continued

8	19	77	21	27			21	23
Sof	⋖	A	⋖	ধ			Ą	A
H _I (8)	4.72(d)	5,56(d)	5.62(d)	4.94(d)			5,04(d)	5.47(m)
J',2' (Hz) H' (6)	4.8	2,5	2.0	1			6.5	1
40	1	ŀ	ì	ŧ			1	1
Anomer	ά	£ НЭ СОЗ	Ø	# Z X 8		I.	₽ ₩ ₩ ₩	**************************************
Structure	TE NO STATE OF THE		Bzłó ÓBzi	Bzio) o z o z o z o z o z o z o z o z o z o	Z-	Bzio Co	IZE SE
Sg.	िय	25		[33			정 _	22
Ref.	72	27	147	<i>L</i> 17	3	9		19
Sol. Ref	A 57	A 57	Α 47	A 47	1 8	- 1	IDES	A 19
H _r (8) Sol.							UCLEOSIDES	
H _r (8) Sol.	<	ď	A	Ø	ı	1	D C-NUCLEOSIDES	A
8	<	ď	5.70(d) A	5.49 A	5.81	5,53 –	3LE 2 FECTED C-NUCLEOSIDES	4,72(d) A
J1,2'(HZ) H1'(8) SOI.	< 5.26 A	- ± 4.99 A	4.3 5.70(d) A	2.8 5.49 A	4.2 5.81 -	3,8 5,53 –	TABLE 2 PROTECTED	4,72(d) A
Δδ J _{1,2} (Hz) H ₁ (δ) Sol.	0.26 — < 5.26 A	0.20 — ± 4.99 A	0.12 4.3 5.70(d) A	0.24 2.8 5.49 A	0.12 4.2 5.81 -	0.17 3.8 5.53 —	ACYL or BENZYL PROTECTED C-NUCLEOSIDES	— 4,7 4,72(d) A

٠,
\vdash
0
20
. 4
January
27
26
11
••
0
10
••
At:
$\overline{}$
ă
*
×
ñ
ĭ
W
8

8	59	21	12
⋖	A	⋖	⋖
4.91(d)	5.68(d)	5,00(d)	5,09(d)
6.0	5.0	4.0	7.5
1	1	1	1
Bzio OBzi	BZIO OBZI	Bzio OBzi	BZICA H PER BZICA
25	25	25	9
∢	∢	<.	Ø
5. <u>%</u> (&)	5,65(d)	5.36(d)	2,0 4,96(dd)
‡	4.5	5.5	2.0
ı	1	1	1
Aco OAc	820 OB2	Aco OAc	Bzio OBzi

TABLE 3 TABLE 3 D-RIBOFINANDSVI -C-NICLEOSIDES	$H_1'(\delta)$ Sol. Ref. Cpd. Structure Anomer $J_1'_2(Hz)$ $H_1'(\delta)$ Sol. Ref.	69 HM 0 a 3.0 5.12(dd) C 51	C 8.37	(d) C 8, <i>37</i> R ₂	S 4.0 4.68(dd) B 19	(d) C 60 $\frac{IO}{I}$ HN β β 4.0 4.46 B 19	(m) C 60	2 9 71 HN WOH3 8 4.0 4.50(d) B 62	z y 6)	HN NH HN NH 3.9 5.4.59 B 38	6 8	% (. 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
SIDES	Anome	đ	80		Ø	83		∞		≖		Ċ <u>v</u>	ı
C-NECL FO	Structure	œ(° ₹	}	ዲ	SNA	- <u>₹</u>	<u>ξ</u> ' (¥	-02 ⁰	>={\bar{\bar{\bar{\bar{\bar{\bar{\bar	₹ 1	HAN NA	<u></u>
LE 3	<u>8</u>	9	3		ľ	2		7		22			73
TABI] [] []		8.37	8.37		8	28	6	6	6	6	왕(평	ĸ
-PIRC	Sol		ပ	ပ		ပ	ပ	ပ	ပ	Ų	മ	C (E)	إن
	H.(6)		5.04(d)	4.72(d)		4.92(d)	4,55(m)	5.10	4.15	5.05	4.63	5.00 (5.62)	4.67
	J1,2,(Hz)		١	1		2.5	i	1	1	3.3	1	3.3 (3.0)	2.0
	Anomer		ಶ	82		ಶ	æ	ಶ	m	ø	92	ö	m
	Structure	1 × × × × × × × × × × × × × × × × × × ×	}	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	₹	>=\ Z-	NS PA	∽= ⟨	Z=\	% ₹ <u></u> ~	NY N		8
				-			Ŧ.		→ ~		I		

23	B	31	23 23	69	69
g	£Ω	U	8 8	മമ	æ
4.60(d)	4.78(d)	5,0 3 (d)	5.12(s) 4.88(d)	5.30(d) 4.99(d)	(Þ) / 6' h
8.9	I	6.1	2.7	3.5	5.0
a	છ	മ	8 m	ප ත	æ
£-5 -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	\$ 5 £	AN A	O N N N	S. S. N. N. P. S. R. S.	R S S S S S S S S S S S S S S S S S S S
8	∞	88	83	48	840
19	91	19) 50(65)) 50(65)	29.99	88
æ	Ω	മ	040)04 040)04	æ	æ
4,45(d)	4.42(d)	4,29(d)	5.83(5.68) Þ ₂ 0(b ₂ 0) 50(65) 5.54(5.42) Þ ₂ 0(b ₂ 0) 50(65)	4.71(d)	4.63(dd)
6,4	5.5	5.5	3.0(3.0)	6.5	3.0
œ	Ø	Ø	8 °C	æ	æ
S A S S S S S S S S S S S S S S S S S S	75 ON SMe	76 ON WH2	N- N	78 HN NH ₂ R ₂ R ₂	79 R ₂

Table 3 continued

П
0
201
January
27
10:26
At:
loaded
ml

Table 3 continued

Ref	35	33	35	43 43	27	27
Sol.	æ	B	6 0	മമ	മമ	ങ
H ¹ · (6)	5,27(d)	5.09(d)	5,06(d)	4,24(s)	5.05(d)	4,81(d)
ربا) ک ^{ار} ام	4.6	3.7	9.4		3.0	6.0
Anomer	Ø	82	æ	ප න	х л	an
Structure	R ₂ CONH ₂	- CO2C2H3	N-W-CH ₃		Z Z	
흏	<u></u> 6	26	93	46	95 H	96
O ₁	01	5 71	0.1	0. 1	V-1	1
Ref.	84 84	23	6		12	ĸ
Ref.		·	E 7	2	·	•
H _I '(6) Sol. Ref.	ß	53	^	_	31	₩.
Sol. Ref.	8 53	£2 £3	E 7	2	C 31	8
H _I '(6) Sol. Ref.	4,71(d) 8 52	4.70(d) B 52	5.95(d) E 7	5.00(d) B 7	5.03(d) C 31	5,23(d) B 35
J _{1,2} '(Hz) H ₁ '(6) Sol. Ref.	5.5 4,71(d) 8 52	6.0 4.70(d) B 52	— 5.95(d) E 7	7.5 5.00(d) B 7	6.1 5.03(d) C 31	5.2 5.23(d) B 35

Table 3 continued

20	<i>L</i> 17	23	23	23	23
മ	മ മ	J	S	S	ပ
5.02	5.24(d) 4.97(d)	5.02(11)	5.06	5.12(m)	4.90(d)
7.0	1.8	I	7.0	1	7.3
æ	ଷ ଫ	æ	æ	œ	æ
103 103 103 103 103 103 103 103 103 103	P. P	H H H H H H H H H H H H H H H H H H H	HN N N N N N N N N N N N N N N N N N N	IO7 HN SCH ₃	IOB HE STATE OF THE STATE OF TH
8 8	55 FS	23 75	ĸ	8	8
മമ	മ മ	8 8	æ	æ	~
5.13(d) 4.79(d)	5.21(d) 4.83(d)	5.17(d) 4,82(d)	4,92(d)	4,74(d)	4.63
3.4	3.1	5.3	6.4	7.0	6.4
ଷ ପ	ಶ ಇ	ප ග	œ	æ	B
97 N N N N N N N N N N N N N N N N N N N	98 ZZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	S= N	100 N N N N N N N N N N N N N N N N N N N	O HO N N N N N N N N N N N N N N N N N N	102 N NH2

	Ref.	8	88	9	9	88		82			29		
	Sol.	æ	മ	മ	ω	B(C)		B/F			m		
	H ₁ (6)	4.90	79'1	5.58	5.21	7.2(7.6) 4.95(5.22) B(C)		5.06(d)			4,80(d)		
	Jr,2'(Hz)	5.3	3.4	3.5	6.9	7.2(7.6)		1			6.0		
	Anomer	ರ	æ	ಶ	œ	æ		œ			æ		
nued	Structure		R 2 2 X		x	- Z-Z	O=		-& ²	0=	TA NATIONAL PROPERTY OF THE PR	-82 -	
conti	Cpd.	4		=	<u>≅</u>	9		=			<u></u>		
Table 3 continued	Ref.	88	88		Ħ		Ħ		70	8		8	70
Tal	Sol	∞	æ		B/C		B/C		æ	8		മ	മ
	H, (4)	5,15(d)	4.88(d)		4,74(d)		4,91(d)		4.87	4.65		6.9	4.65
	<u>ا ت</u>						~						
	J,'2'(Hz)	3.1	6.4		4.3		5,8		4.9	4.0		4.5	4.2
	Anomer J ₁ ',2'(H ₂	α 3,1	B 6.4		8 4.3				σ 4.9	в 4.0		α 4.5	в 4.2
	•			Ţ.		Z-	=N 5.8	² 0.		S. N.	O=		ZI N

			_	נסבני	יייספט-יפ	9-6-7	TABLE 4	4 A	1 10 1 1 1 X 1						
8	Structure	Anomer	H ₁ (8)	42(Hz)	12 (Hz)	. Se	[] []		$\frac{1}{2}(Hz)$ $\frac{1}{2}(Hz)$ Sol. Ref. Cpd. Structure Anomer	Anomer	H1 (8) J1,2 (HZ)		اSol. اوک	Sol.	Ref.
<u>6</u>								124		B	5.13	8.7	9'9	J	31
		6 2	4.97(t)	8.5	7,2	ں	30,31		<u>`</u> ~e°	83	5.14	7.0	7.0	ပ	31
	_ .₹ °							<u>.</u>	±z ⁷ 0= } -	ಶ	4.90	8,6	4.7	മ	8
20	HI Y	82	4.81(dd) 6.1	6.1	4,1	Ų	30,71	3	R3 / N	83	76.1 1	8.4	7.3	മ	20
) ~~			<u> </u>	!	,			ر محر			(1	:
	KF.							92	~ /\ ¥-//	ಶ	4.93	%.7 -	4.5	2	8
짇		σ2	4,83(t)	8.2	7.2	æ	30,71		: : : :	æ.	96. 1	7.5	7.5	m	20
	-g.							!	¥. \$	7 8	4.91(dd)	7.9	5.4	æ	22
122	CH3-N N-CH3	92	5,04(dd) (6.4	6. 0	ပ	30,71	<u> 27</u>	~ZI =\ :-\	7 8	4.99(t)	7.5	7.5	æ	72
	~ ~~								, ₹						
<u> </u>		ð	5,30(dd) {	8.0	5.2	ပ	ដ	128	Z /	α2 Β.	5.46(dd)	6.8	1	£	K
	», α.	8 2	5.30(dd)	9.0	6.2	ပ	IJ		E E						
	'n											Tab1	Table 4 continued	ntin	ned

Table 4 continued

F	7	74	31	8 8	88	22 23
8	J	J	æ	į !	+ +	1 }
Anomer Hi (8) 42 (42) 42 (42) Sol.	l	ŀ	-	† †	1 +	
42. (Hz)	4.2	3.6	6.0	! !	1 1	1.1
H.(6)	4,97(d)	5.01(d)	4.76	≤4,20 4.66	24,20 4,62	²4,10 4.67
Anomer	82	œ	Ø	8 W	g eq	ಶ <u>ಅ</u>
Structure	¥.		2-X 2-X 2-X	OF NH NA	A A A A A A A A A A A A A A A A A A A	OEN N
Sp	134	8	<u>8</u>	2 <u>75</u>	88	<u>139</u>
æ	23	22	22 23	22 22		サロ
S	æ	89 89	82	8 8	IDES	ပပ
1,2 "(Hz)	i	6.0	5.8	6.0	WCL EOS	1 1
2 (H2)	6.8	7.5	7.6	7.5	100	6.1
(24), 21/2 (24), 21/2 (9), 1H	5,16(dd)	5,13(dd) 5,12(dd)	5.19(dd) 5.20(dd)	5.15(dd) 5.15(dd)	E 5 URANOSY	4,67(q) 5,02
Anomer	co	в <i>с</i> с	8 %	ප ය	TABLE 5	д Ф
• •	, J	ZI di	**	, **)=(TABLE 5 FREE D-ARABINOFURANOSYL-C-NUCLEOSIDES	2 6 P
Structure		ο=⟨x ₹1/2	~ <u>₹</u> }	2-(z z_//	<u>E</u>	چ چ

76

E

92

Ж £

A = CDCl₃, B = DMSO-d₆, C = D₂0, D = CD₃0D, E = Pyridine-d₅, F = DAC

s = singlet, d = doublet, t = triplet dd = double doublet, m = multiplet
q = quartet Þ

The results appear, however, to be inconsistent. In compound $\underline{137}$, 76.48 ppm (C-1') was listed for the α -anomer and 71.72 ppm (C-1') for the β -anomer. For $\underline{138}$, on the other hand, a value of 71.13 ppm was listed for the α -anomer and 76.48 for the β -anomer. This reversal of the chemical shifts might be attributed to some additional steric crowding between the C-2' hydroxyl and the C-1' proton of \underline{D} -arabinofuranosyl C-nucleosides.

ACKNOWLEDGEMENT

One of the authors (CKC) is greatly indebted to Drs. Jack J. Fox and Kyoichi A. Watanabe of the Sloan-Kettering Institute for Cancer Research for affording me invaluable guidance and opportunities to study C-nucleoside chemistry at the Institute. The authors are also indebted to Professor C. DeWitt Blanton, Jr. of the University of Georgia College of Pharmacy for his in-depth critique of this manuscript and to the Office of the Vice President for Research, The University of Georgia Research Foundation for a grant in support of our work.

REFERENCES

- 1. Cohn, W. E., Biochim. Biophys. Acta, 1959, 32, 569.
- Hanessian, S.; Pernet, A. G., Advan. Carbohydr. Chem. Biochem., 1976, 33, 111-118.
- Daves, Jr., G. D.; Cheng, C. C., Progress Med. Chem., 1976, 13, 303-348.
- James, E. R., J. Carbohydr. Nucleosides Nucleotides, 1979, <u>6</u>, 417-465.
- Suhadolnik, R. J., Nucleoside Antibiotics,
 Wiley-Interscience, New York, 1970; Suhadolnik, R. J., Nucleosides
 as Biological Probes, Wiley-Interscience, New York, 1979.
- 6. Trummlitz, G.; Moffatt, J. G., J. Org. Chem., 1973, 38, 1841.
- Albrecht, H.P.; Repke, D. B.; Moffatt, J. G., J. Org. Chem., 1974, 39, 2176.
- Chu, C. K.; Wempen, I.; Watanabe, K.A.; Fox, J. J., J. Org. Chem., 1976, 41, 2793.

- Chu, C. K.; Reichman, U.; Watanabe, K. A.; Fox J. J.,
 J. Org. Chem., 1977, 42, 711.
- Tam, S. Y-K.; De Las Heras, F. G.; Klein, R. S.; Fox,
 J. J., Tetrahedron Letters, 1975, 3271.
- Huynh-Dinh, T.; Kolb, A.; Gouyette, C.; Igolen, J., J. Heterocycl. Chem., 1975, 12, 111.
- 12. Albrecht, H. P.; Repke, D. B.; Moffatt, J. G., J. Org. Chem., 1973, 38, 1836.
- 13. Srivastava, P. C.; Robins, R. K., J. Heterocycl. Chem., 1981, 18, 1659.
- Townsend, L. B., Synth. Proced. Nucleic Acid Chem., 1973,
 2, 267.
- Imbach, J. L.; Kam, B. L., J. Carbohydr. Nucleosides, Nucleotides, 1974, 1, 271.
- Imbach, J. L.; Barascut, J.-L.; Kam, B. L.; Tapiero,
 C., Tetrahedron Lett., 1974, 129.
- 17. Imbach, J. L.; Barascut, J.-L.; Kam, B.L.; Rayner, B.; Tamby, C.; Taipero, C., J. Heterocycl. Chem., 1973, 10, 1070.
- Ohrui, H.; Jones, G. H.; Moffatt, J. G.; Maddox, M. L.; Christensen, A. T.; Byram, S. K., J. Am. Chem. Soc., 1975, 97, 4602.
- Tam, S. Y-K.; Klein, R.S.; De Las Heras, F. G.; Fox, J. J., J. Org. Chem., 1979, 44, 4854.
- 20. Huynh-Dinh, T.; Kolb, A.; Gouyette, C.; Igolen, J.; Tran-Dinh, S., J. Org. Chem., 1975, 40, 2825.
- Gupta, C. M.; Jones, G. H.; Moffatt, J. G., J. Org. Chem., 1976, <u>41</u>, 3000.
- Trummlitz, G.; Repke, D.B.; Moffatt, J.G., J. Org. Chem., 1975, 40, 3352.
- 23. Ferris, J. P.; Badesha, S. S.; Ren, W. Y.; Huang, H.C.; Sorcek, R. J., J. Chem. Soc., Chem. Comm., 1981, 110.
- Perlin, A.S.; Cyr, N.; Koch, H.J.; Korsch, B., Ann.
 N.Y. Acad. Sci., 1973, 222, 935.
- Usui, T.; Tsushima, S.; Yamaoka, N.; Matsuda, K.;
 Tuzimura, K.; Sugiyama, H.; Seto, S.; Fuzzeda, K.;
 Miyajima, G., Agric. Biol. Chem., 1974, 38, 1409.

- Sugiyama, H.; Yamaoka, N.; Shimizu, B.; Ishido, Y.;
 Seto, S., Bull. Chem. Soc., Jpn., 1974, 47, 1815.
- Cousineau, T.J.; Secrist III, J.A., J. Org. Chem., 1979, 44, 4351.
- 28. Tran-Dinh, S.; Neumann, J.-M.; Thiery, J-M.; Huynh-Dinh, T.; Igolen, J.; Guschlbauer, W., J. Am. Chem. Soc., 1977, 99, 3267.
- Legraverend, M.; Bisagni, E.; Lhoste, J-M., J. Heterocycl. Chem., 1981, 18, 893.
- Chu, C. K.; Reichman, U.; Watanabe, K. A.; Fox, J. J.,
 J. Heterocyclic Chem., 1977, 14, 1119.
- 31. Huynh-Dinh, T.; Igolen, J.; Bisagni, E.; Marquet, J.P.; Civier, A., J. Chem. Soc., 1977, 761.
- 32. Kolb, A.; Gouyette, C.; Huynh Dinh, T.; Igolen, J., Tetrahedron, 1973, 31, 2971.
- Srivastava, P.C.; Robins, R.K., J. Med. Chem., 1983,
 26, 445.
- 34. Imbach, J.-L., Ann. N.Y. Acad. Sci., 1975, 255, 177.
- De Las Heras, F.G.; Tam, S. Y-K.; Klein, R.S.; Fox,
 J. J., J. Org. Chem., 1976, 41, 84.
- Hruska, F. E.; Grey, A. A.; Smith, I.C.P., J. Am. Chem. Soc., 1970, 92, 4088.
- Chu, C. K.; Watanabe. K. A.; Fox, J. J.; J. Heterocycl. Chem., 1975, <u>12</u>, 817.
- 38. Earl, R.A.; Townsend, L.B., J. Carbohydr. Nucleosides Nucleotides, 1980, 7, 35.
- Sharma, R. A.; Bobek, M.; Bloch, A., J. Med. Chem.,
 1975, 18, 473.
- 40. Ohrui, H.; Fox, J. J., Tetrahedron Letters, 1973, 1951.
- Reichman, U.; Hirota, K.; Chu, C. K.; Watanabe, K. A.;
 Fox, J. J., J. Antibiotics, 1977, 30, 129.
- De Las Heras, F. G.; Chu, C. K.; Tam, S. Y-K.; Klein,
 R. S.; Watanabe, K. A.; Fox, J. J., J. Heterocycl.
 Chem., 1976, 13, 175.
- 43. Chu, C. K.; Watanabe, K. A.; Fox, J. J., J. Heterocyclic Chem., 1980, 17, 1435.
- 44. Chu, C.K., submitted for publication.
- 45. Chu, C.K., Heterocycles, in press.

- 46. Huynh-Dinh, T.; Igolen, J., J. Org. Chem., 1976. 41, 3124.
- Ren, W.-Y.; Lim., M.-I.; Otter, B. A.; Klein, R. S., J. Org. Chem., 1982, 47, 4633.
- 48. Gensler, W. J.; Chan, S.; Ball, D. B., J. Org. Chem., 1981, 46, 3407.
- Kozikowski, A.P.; Goldstein, S., J. Org. Chem., 1983, 48, 1139.
- 50. De Bernardo, S.; Weigele, M., J. Org. Chem., 1976, 41, 287.
- 51. De Bernardo, S.; Weigele, M., J. Org. Chem., 1977, 42, 109.
- Albrecht, H. P.; Repke, D B.: Moffatt, J. G., J. Org. Chem., 1975, 40, 2143.
- 53. Earl, R. A.; Townsend, L. B., J. Carbohydr. Nucleosides Nucleotides, 1978, 5, 305.
- 54. Chu, C. K., submitted for publication.
- Tam, S. Y-K.; Klein, J. S.; De Las Heras, F. G.; Klein,
 R. S.; Fox, J. J., J. Heterocyclic Chem., 1976, 13,
 1305.
- Tam, S. Y-K.; Klein, R.S.; Wempen, I.; Fox, J. J.,
 J.Org. Chem., 1979, 44, 4547.
- 57. Lim, M-L.; Ren, W-Y.; Otter, B. A., Klein, R. S., J. Org. Chem., 1983, 48, 780.
- 58. Lim, M-L.; Klein, R. S., Tetrahedron Letters, 1981, <u>22</u>, 25.
- Buchanan, J. G.; Edgar, A. R.; Power, M. J.; Williams,
 G. C., Carbohydr. Research, 1977, 55, 225.
- 60. David, S.; Lubineau, A., Carbohydr. Research, 1973, 29, 15.
- 61. Lerch, U.; Burdon, M. G.; Moffatt, J. G., J. Org. Chem., 1971, <u>36</u>, 1507.
- 62. Earl, R. A.; Townsend, L. B., J. Heterocycl. Chem., 1977, 14, 699.
- 63. Robins, M. J.; Robins, R. K., J. Am. Chem. Soc., 1965, 87, 4934.
- 64. Argoudelis, A. D.; Mizsak, S. A., J. Antibiotics, 1976, 29, 818.

- Gutowski, G. E.; Chaney, M. O.; Jones, N. D.; Hamill, R. L.; Davis,
 F. A.; Miller, R. D., Biochem. Biophys. Res. Comm., 1973, <u>51</u>, 312.
- Lewis, A. F.; Long, R. A.; Roti Roti, L. W.; Townsend,
 L. B., J. Heterocycl. Chem., 1976, 13, 1359.
- Lewis, A. F.; Townsend, L. B., J. Am. Chem. Soc., 1982, 104, 1073.
- 68. Nakagawa, Y.; Kano, H.; Tsukuda, Y.; Koyama, H., Tetrahedron Letters, 1967, 4105.
- 69. Srivastava, P. C.; Pickering, M. V.; Allen, L. B.; Streeter, D. G.; Campbell, M. T.; Witkowski, J. T.; Sidwell, R. W.; Robins, R.K., J. Med. Chem., 1977, 20, 256.
- 70. Farkas, J.; Sorm. F., Coll. Czech. Chem. Comm., 1972, 37, 2798.
- Matsuda, A.; Chu, C. K.; Reichman, U.; Pankiewicz, K.;
 Watanabe, K. A.; Fox, J. J., J. Org. Chem., 1981, 46, 3603.
- Kolb, A.; Huynh Dinh, T.; Igolen, J., J. Carbohydr. Nucleosides Nucleotides, 1975, 2, 37.
- 73. Jain, T. C.; Russell, A. F.; Moffatt, J. G., J. Org. Chem., 1973, 38, 3179.
- Chu, C. K.; Reichman, U.; Watanabe, K. A.; Fox, J. J.,
 J. Med. Chem., 1978, 21, 96.
- 75. Acton, E. M.; Fujiwara, A. N.; Goodman, L.; Henry, D. W., Carbohydr. Research, 1974, 33, 135.
- Barnathan, G.; Huynh Dinh, T.; Kolb, A.; Igolen, G.,
 Eur. J. Med. Chem., 1976, 11, 67.
- Rosenthal, A.; Lee, H. H., J. Carbohydr. Nucleosides Nucleotides, 1978, <u>5</u>, 559.
- 78. Stevens, J. D.; Fletcher, H. G. Jr., J. Org. Chem., 1968, 33, 1799.
- 79. Robins, R. K.; Townsend, L. B.; Cassidy, F.; Gerster, J. F.; Lewis, A.F.; Miller, R. L., Heterocycl. Chem., 1966, 3, 110. 80.
- 80. Tanaka, H.; Hayakawa, H.; Miyasaka, T., Chem. Pharm. Bull., 1982, 30, 1117.
- 81. Kalvoda, L.; Farkas, J.; Sorm, F., Tetrahedron Lett., 1970, 2297.
- Buchanan, J. G.; Edgar, A. R.; Power, M. J.; Williams, G. C.,
 J. C. S. Chem. Comm., 1975, 501.
- 83. Soto, T.; Watanabe, M.; Noyori, R., Tetrahedron Lett., 1978, 45, 4403.

- 84. Just, G.; Lim, M-I., Can. J. Chem., 1977, 55, 2993.
- 85. MacCoss, M.; Robins, M. J.; Rayner, B.; Imbach, J-L., Carbohydr. Res., 1977, <u>59</u>, 575.

Received August 24, 1983